90 research outputs found

    Effect of Citalopram on Emotion Processing in Humans:A Combined 5-HT [C]CUMI-101 PET and Functional MRI Study

    Get PDF
    A subset of patients started on a selective serotonin reuptake inhibitor (SSRI) initially experience increased anxiety, which can lead to early discontinuation before therapeutic effects are manifest. The neural basis of this early SSRI effect is not known. Presynaptic dorsal raphe neuron (DRN) 5-HT1A receptors are known to play a critical role in affect processing. Thus we investigated the effect of acute citalopram on emotional processing and the relationship between DRN 5-HT1A receptor availability and amygdala reactivity. Thirteen (mean age 48±9 years) healthy male subjects received either a saline or citalopram infusion intravenously (10 mg over 30 min) on separate occasions in a single-blind, random order, cross-over design. On each occasion, participants underwent a block design face-emotion processing task during fMRI known to activate the amygdala. Ten subjects also completed a positron emission tomography (PET) scan to quantify DRN 5-HT1A availability using [(11)C]CUMI-101.Citalopram infusion when compared to saline resulted in a significantly increased bilateral amygdala responses to fearful vs. neutral faces (Left p=0.025; Right p=0.038 FWE-corrected). DRN [(11)C]CUMI-101availability significantly positively correlated with the effect of citalopram on the left amygdala response to fearful faces (Z=2.51, p=0.027) and right amygdala response to happy faces (Z=2.33, p=0.032). Our findings indicate that the initial effect of SSRI treatment is to alter processing of aversive stimuli, and that this is linked to DRN 5-HT1A receptors in line with evidence that 5-HT1A receptors have a role in mediating emotional processing

    Medial prefrontal cortex serotonin 1A and 2A receptor binding interacts to predict threat-related amygdala reactivity

    Get PDF
    Background\ud The amygdala and medial prefrontal cortex (mPFC) comprise a key corticolimbic circuit that helps shape individual differences in sensitivity to threat and the related risk for psychopathology. Although serotonin (5-HT) is known to be a key modulator of this circuit, the specific receptors mediating this modulation are unclear. The colocalization of 5-HT1A and 5-HT2A receptors on mPFC glutamatergic neurons suggests that their functional interactions may mediate 5-HT effects on this circuit through top-down regulation of amygdala reactivity. Using a multimodal neuroimaging strategy in 39 healthy volunteers, we determined whether threat-related amygdala reactivity, assessed with blood oxygen level-dependent functional magnetic resonance imaging, was significantly predicted by the interaction between mPFC 5-HT1A and 5-HT2A receptor levels, assessed by positron emission tomography.\ud \ud Results\ud 5-HT1A binding in the mPFC significantly moderated an inverse correlation between mPFC 5-HT2A binding and threat-related amygdala reactivity. Specifically, mPFC 5-HT2A binding was significantly inversely correlated with amygdala reactivity only when mPFC 5-HT1A binding was relatively low.\ud \ud Conclusions\ud Our findings provide evidence that 5-HT1A and 5-HT2A receptors interact to shape serotonergic modulation of a functional circuit between the amygdala and mPFC. The effect of the interaction between mPFC 5-HT1A and 5-HT2A binding and amygdala reactivity is consistent with the colocalization of these receptors on glutamatergic neurons in the mPFC

    A combined analysis of genetically correlated traits identifies 187 loci and a role for neurogenesis and myelination in intelligence

    Get PDF
    Intelligence, or general cognitive function, is phenotypically and genetically correlated with many traits, including a wide range of physical, and mental health variables. Education is strongly genetically correlated with intelligence (rg = 0.70). We used these findings as foundations for our use of a novel approach—multi-trait analysis of genome-wide association studies (MTAG; Turley et al. 2017)—to combine two large genome-wide association studies (GWASs) of education and intelligence, increasing statistical power and resulting in the largest GWAS of intelligence yet reported. Our study had four goals: first, to facilitate the discovery of new genetic loci associated with intelligence; second, to add to our understanding of the biology of intelligence differences; third, to examine whether combining genetically correlated traits in this way produces results consistent with the primary phenotype of intelligence; and, finally, to test how well this new meta-analytic data sample on intelligence predicts phenotypic intelligence in an independent sample. By combining datasets using MTAG, our functional sample size increased from 199,242 participants to 248,482. We found 187 independent loci associated with intelligence, implicating 538 genes, using both SNP-based and gene-based GWAS. We found evidence that neurogenesis and myelination—as well as genes expressed in the synapse, and those involved in the regulation of the nervous system—may explain some of the biological differences in intelligence. The results of our combined analysis demonstrated the same pattern of genetic correlations as those from previous GWASs of intelligence, providing support for the meta-analysis of these genetically-related phenotypes.</p

    Genetic contributions to two special factors of neuroticism are associated with affluence, higher intelligence, better health, and longer life

    Get PDF
    Higher scores on the personality trait of neuroticism, the tendency to experience negative emotions, are associated with worse mental and physical health. Studies examining links between neuroticism and health typically operationalize neuroticism by summing the items from a neuroticism scale. However, neuroticism is made up of multiple heterogeneous facets, each contributing to the effect of neuroticism as a whole. A recent study showed that a 12-item neuroticism scale described one broad trait of general neuroticism and two special factors, one characterizing the extent to which people worry and feel vulnerable, and the other characterizing the extent to which people are anxious and tense. This study also found that, although individuals who were higher on general neuroticism lived shorter lives, individuals whose neuroticism was characterized by worry and vulnerability lived longer lives. Here, we examine the genetic contributions to the two special factors of neuroticism—anxiety/tension and worry/vulnerability—and how they contrast with that of general neuroticism. First, we show that, whereas the polygenic load for neuroticism is associated with the genetic risk of coronary artery disease, lower intelligence, lower socioeconomic status (SES), and poorer self-rated health, the genetic variants associated with high levels of anxiety/tension, and high levels of worry/vulnerability are associated with genetic variants linked to higher SES, higher intelligence, better self-rated health, and longer life. Second, we identify genetic variants that are uniquely associated with these protective aspects of neuroticism. Finally, we show that different neurological pathways are linked to each of these neuroticism phenotypes.</p
    • 

    corecore